MicroTRAK/P18
Development & Training Kit

Lab Book

Date: 20 December 2011

Document Revision: 1.02

BIPOM Electronics

16301 Blue Ridge Road, Missouri City, Texas 77489
Telephone: (713) 283-9970 Fax: (281) 416-2806
E-mail: info@bipom.com

Web: www.bipom.com

mailto:info@bipom.com
http://www.bipom.com

© 1999-2012 by BiPOM Electronics, Inc. All rights reserved.

MicroTRAK/P18 Development and Training Kit Student Exercise Book. No part of this work may be
reproduced in any manner without written permission of BiPOM Electronics.

All trademarked names in this manual are the property of respective owners.

WARRANTY:

BiPOM Electronics warrants MicroTRAK/P18 for a period of 1 year. If the Kit becomes defective during this
period, BiPOM Electronics will at its option, replace or repair the Kit. This warranty is void if the product is
subjected to physical abuse or operated outside stated electrical limits. BiPOM Electronics will not be
responsible for damage to any external devices connected to the Kit. BiPOM Electronics disclaims all
warranties express or implied warranties of merchantability and fitness for a particular purpose. In no event
shall BiPOM Electronics be liable for any indirect, special, incidental or consequential damages in connection
with or arising from the use of this product. BIPOM'’s liability is limited to the purchase price of this product.

TABLE OF CONTENTS

INTRODUCTION

LAB1 - Introduction to the MicroTRAK/P18

LAB2 - Input/Output

LAB3 - Traffic Light

LAB4 - Analog to Digital Conversion on TB-1

LAB5 - Analog to Digital Conversion on MINI-MAX/P18
LAB6 - Timers and Interrupts

LAB7 - 4x4 Keypad

LAB8 - Liquid Crystal Display (LCD)

LAB9 - How to adjust LCD contrast

LAB10 - Buzzer

12

13

16

20

22

25

28

31

33

Introduction

The purpose of the MicroTRAK/P18 is to familiarize the student with developing practical applications using
the PIC18F series of microcontrollers. PIC18F is based on the Microchip® PIC® microcontroller architecture,
a very popular microcontroller system with applications ranging from industrial, medical, home automation to
automotive.

The MicroTRAK/P18 consists of the following components:

MicroTRAK Carrier Board

MINI-MAX/P18 Microcontroller Board

TB-1 Training Board

PROTO-1 Prototyping Board

I/0 Module

LCD242 LCD with backlight

KP1-4X4 Keypad

Carrier board with extra voltage regulator

MPLAB with Assembler, Debugger and Simulator (free download from Microchip web site)
Micro-IDE Integrated Development Environment with support for MPLAB from Microchip
Example projects

Serial downloader

Cables

Adapter

Training Manuals

Labbook

The following external items are required for each training kit station:

Personal Computer (PC) running Windows 98/NT/2000/XP/Vista or Windows 7 (32-bit or 64-bit)
Minimum 256MB memory and 1 GB of available hard disk space.

One available RS232 Serial port (COM1 through COM8). If your PC does not have a serial port, you can
use our CBL-USB-COM-1 product to convert USB to RS232.

Figure 1 shows all the components connected together:

MicroTRAK/P18
RS232 Cable

LCD242

Thmbdbebs BabEREEE reannen

CTUTTE TR I} (RILETLY] NERERAAN

KP1-4X4 Keypad I/0 Module

To outlet

Figure 1

Getting Started

Log on to Windows before using MicroTRAK/P18. Enter the user name and password that your instructor has
given to you before the Lab. Make sure to log out when you are done with the PC at the end of the Lab. Do
not share your username or password with anybody.

The programs are written as C and Assembly Language Program files (with the extension .C or .asm but they
are plain text files). These C and Assembly Program files are created using MPLAB program from Microchip.

You can edit and save programs and download to the Training Board using MPLAB. Creating programs and
running them on the Training Board consists of the following steps:

1. Edit an existing or create a new program using MPLAB Program Editor.

2. Compile the program using MPLAB Build Toolkit (C Compiler or Assembler).

3. Download the program to the Training Board using Micro-IDE Serial Loader.

4. Run and debug the program on the Training Board using Micro-IDE Terminal Window.

Figure 2 illustrates these steps.

Create PIC18F

Assembly Programs

L
vl THOOM
Sat &ll FOKE I pons ad socpeed
§ Weiming & 0 me & TEDED baw matar she SAEraspieding pere p
L LA e el
=t RIS H
Assemble Using
¢ Loop docewer
loop clcd FORTI Maken =11 TORT I ousputs logan _ MPASM Assembler
call Dealmy 1
Bl | o ol
el LULLLRILLE’ P TR bOe b ausadahad ERdEFRvECI
::::‘ ::‘:'; RN il e [W A I Ly 2 e pecopeact T o st B AT E s S A B 00 e ke
|anguege ool werone: MEASK T aon o5 17, mplinkomes w410 mplib eoeed 37
b Loy 5 lezep Frunmssas ur sy bl DEBLVE b vuliud
[Taryat dabiig gladaimis _MFLEE_DEBLIGGER_F<1=1'
Ewglupiulotmuplw:m _ICOERARNT
Deley wavilw Offh JAFSLE Eha delay Ssummar LAATLAL W Rl deilE 235112 B0
[COTUT R a
nierm it Fi
mmrf SORRITE CE: g::r-c- echiny nd puipt fles
B Ly Exncidiey TUFTO graam Fil s iorochiphFashd Suielhd s se iy, p 18F4EE Snasm®
arp sTome mop Ancbructions to o osdd delsy [Exmcutng. "\ Pro gram FissidicrochipbdPASH Suieimolink s ® ol BFGE "ioc® u_DEEIG)
HFLIHE 4 317. Linkar
- opwright (21 L99E-1010 Hicoookip Technology oo
e Ertors 0
s s . Pt Tt ; P
aeto SIE COUWTL 15 mero, check COUNTE Lo nakead LX) p oA ki TR PR ke Yy .caf
deoisr COUNTE.1 s o 1 [Cebisg ki ol prossc! Trhaepemidesopl M PASExn np e sipecifivhn mop' succeeded
A e L L e ek o P) L ey b s o e PSR Tl e 5 1T, mpdinkocwa o417, gl e wd 37
IETS| ¥ rguey gl
Frecrocessnrsymbol _ OEBLEY s celred
[Terg=tdebug plstomie ' WPLAR OEELMGGER PI=1'
st iy o b aptica &ia:__ICDEFART'.
Famt 0T TR G I
[BULD SUCCEEDED
L] L]

Download to

MicroTRAK/P18

T R s Dok

000 Lalhd Mgges Rall el I3 TUH . L R . IiE
i . Execute program
T e r._0 -
17 |
= e T
. : :
| I [775) R IR EY Mt Bt)
[y | RO x|
Figure 2

LAB1 — Introduction to MicroTRAK/P18

Overview
The purpose of this lab is to familiarize you with MicroTRAK/P18 and the program development environment.
In this lab, you will create a simple program in C language, compile the program to form a hex file, download

the program to the MINI-MAX/P18 Microcontroller board and execute the program.

The knowledge developed in this lab will be very useful in subsequent labs when working with the PIC18F458
single-chip flash microcontroller to develop programs.

Instructions

To create your own project, start MPLAB. Select Project->New:

Project Debugger Programmer To
Project Wizard. ..

Open, .,
Close k
Sek Active Project 3

CQuickbuild {no . asm File)

Packagein .2ip

Cleamn

Euild Configuration 3
Build Cptions. .. 3

Save Project

Save Project As.. .

&dd Files bo Fraject, ..

add ew File to Project, ..
Femove File From Project k

Seleck Language Toalsuite,
Set Language Tool Locations. ..
Yersion Contral...

Specify project name and location:

 Project Mame

Itest

r~ Project Directary

Ic:\tesﬂ Birowse: . |

Help | QK I Cancel |
Click OK.

Create a new file by selecting File->New:

File Edit Wiew Project Debugger Progra

CErl+

Add Mew File ko Project, ..
Qper. .. CErHO
Close Zkrl+E

Save Chrl+5
Save As...
Sawe Gl 0 o e [e

Cpen Workspace. .,
Save Workspace
Save Workspace As...
Close Warkspace

Imnport...
Export...

Brimk, .. ZErl+P

Fecent Files 3
Recent Workspaces r

Exik

MPLAB will open a new window and show the empty file:

an Lual PLAE [DE v 56 =18l x|

SN oms Faar Id g Fapem b D CEpd = oA d-

r‘la.u|¢-.- A ||;.L|_,.‘Ma Qi KB @ | E o | dheeknurn b s

| = Inrasn iz amr=-c | | haent - el IS —R

Select File->Save As:

File Edit Wiew Project Debugger Progrs
Mt ZErl+R
Add Mew File ko Project, ..
Qper. .. CErHO
Close Zkrl+E

Save Chrl+5

Sawe Gl 0 o e [e

Cpen Workspace. .,
Save Workspace
Save Workspace As...
Close Warkspace

Imnport...
Export...

Brimk, .. ZErl+P

Fecent Files 3
Recent Workspaces r

Exik

Save the file as test.asm to c:\test folder:

S-Eﬁ.ﬂE!jn:l‘--_‘:JI best j @ 1}- = -

File name: ftest.asn| Save I
Save as lype: Iﬁ.ssemhly Source Files [asm;" as;" ihe"2) j Cancel |

Jump to: | D:Mbipom'devtoals\MPASMAE samplesipict: x|

Encoding: I.&NSI j
[T AddFie To Praject

Click Save.

10

Now add this new file test.asm to the test project. Select Project->Add Files to Project:

Project Debugger Programmer Tools Conf
Project Wizard...

Mew. .,

CIPEm,

Close 3
Sek Active Project 4

uickbuildi{na , asm HliE)

Package in .zip

Clean

Export Makefile

Build &l Chr+F10
Make F10

Build Canfiguration 3
Build Options., .. [

Sawve Praject

Save Project As. ..

#dd Files ta P ck...
Add Mews File bo Project. ..
Remowe File From Project 3

Select Language Toolsuite, .,
Set Language Tool Locations,
Yersion Control,..

Select test.asm from c:\test to add to the project:

Add Files to Project y ilﬂ

Lu:u:uk_in:l'-_"_f}test j O ? = [T

File rmame: |test.asm Open I
Cancel |

Files af bype: I.-i'-.sseml:ul_l,l Source Files [*.azm)

=
&

Jurnp tar I C:htesth,

Femember thiz zetting
f* Auto; Let MPLAE IDE guess

™ User: File[s] were created especially for this project, use relative path
™ Sustem: File[s] are external to project, use absolute path

Click Open.

11

In the test.asm source file window, type the following to configure the program for PIC18F458 microcontroller:
list p=18f458
#include <p18F458.inc>
CONFIG OSC =HS ,BOR =ON, BORV =45, WDT = OFF, STVR = ON

Note: When typing, put a tab character before each line in the assembler. Otherwise, you may get warnings
from the assembler.

list command specifies the microcontroller type as PIC18F458

#include defines the include file to include in this project. In this case, we use the include file p18F458.inc
that contains the PIC18F458 specific register names and definitions.

CONFIG command specifies the special hardware configuration values for PIC18F458. In this case:
OSC = HS (this means, we selected high speed crystal as the clock source)
BOR = ON (this means that Brownout detect feature is enabled)

BORV = 45 (this means that the Brownout value is set at 4.5 Volts, supply voltages below 4.5 Volts will
results in microcontroller reset)

WDT = OFF (Watchdog timer is disabled)

STVR = ON (A stack overflow will reset the PIC18F458)

The resulting source file window will look like this:

Il C:'.test' test.asm™®] 4|

list p=18£458

#include <pl8F4E88. incs

CONFIG 0O5C = HS |, BOR = ON | BORVY = 45 | DT = OFF, STWE = ON

12

Now type the following small assembly language program:

TRISB
PORTB, 6

clrf
bsf

b'00000000
TRISC

moviw
movwf

b'11111110
PORTC

moviw
movwf

b is the symbol for binary notation. For example, b'11111110' is the equivalent of 254 decimal or FE hex.

TRISB is the data direction register for I/O PORT B. PORTB is the data register for I/O PORT B.

TRISC is the data direction register for I/O PORT C. PORTC is the data register for /O PORT C.

This simple program first sets port pin PORTB,6 to prevent reset on the MINI-MAX/P18 board (Otherwise,
the secondary processor will reset the main processor within 2 seconds).

The program then sets first bit of PORT C (also referred to as RCO) as an output and then clears this bit.

Finally, add the keyword END at the end of your program to tell the assembler where the program ends. The
resulting source file will look like this:

Il c:\testhtest.asm

list

e |

p=15f458

finclude <“pl8F4E53. inc-

CONFIG O5C = HS , EBOR
clrf TRISE

bsf PORTE, &
movrl kL' 00oooooo!
o wwrE TRIEC

mo vl h'l1l111110"
maurE PORTC

END

= 0N EBORY =

-

=10l x|

[»]

45 T = OFF, ESTVE = ON

L

Save the file by selecting File->Save.

13

The next step is to build the project. Select Project->Build All:

Project Debugger Programmer Tools Confi

Project Wizard. ..

Mesw, .,

Open...

Close r
Set Active Project k

Guickbuild (na asm file)

Package in .zip

Clean

Export Makefile

Build All CtrH-F10

Make Fio
Build Configuration r
Build Options. .. r

Save Projeck

Save Projeck As. .,

Add Files to Project. ..

Add Mew File to Praoject. ..

Remove File From Project k

Select Language Toolsuite, ..
Set Language Tool Locations. ..
Mersion Contral. ..

On the first build, MPLAB will prompt with the following question:

Absolute or Relocatable? x|

Do you want thiz project to generate abzolute or relocatable code?
['r'ou can change this later in the Build Optionz dialog on the “Suite’ tab.]

Abzolute Felocatable

Select Absolute.

14

MPLAB will open the Build Window and build the project successfully if the source file was typed correctly:

=lolx|

Build | Wersion Contral I Find in Files I

Debug build of project "chestitestmep' started.

Language tool versions: MPASMWIN exe w537, mplink.exe «w4.37, mplib.exe w4.37
Preprocessor symbol’__DEBUG' is defined.

Sun Sep 19 22:35:58 2010

Clean: Deleting intermediary and output files.

Clean: Deleted file "Ciesttesto".

Clean; Deleted file "CiMesttesten.

Clean: Deleted file "Citestitest hex".

Clean: Deleted file "Citestitest Ist".

Clean: Deleted file "citestitest cof".

Clean: Done.

Executing: "DA\Program Files\MicrochipPASM Suite\MPASMWIN. exe" /g /p18F458 "testasm" "testlst" je"testen” /d__DEBUG=1

Executing: "DAProgram Files\Microchip\WPASKM Suitelmplink exe" /p18F458 "testo” jJu_DEBUG jz_ MPLAB_BUILD=1 fz_ MPLAB_DEBUG=1 /o"test.cof" /b
MPLINK 4.37. Linker

Copyright {c) 1998-2010 HMicrochip Technology Inc.
Errors |

Loaded citestitest cof.

Debug build of project "chiestitestmep' succeeded.

Language toal versions: MPASMWIN axe w837, mplink.exe w4.37, mplib.exe w4.37
Preprocessor symbol’__DEBUG' is defined.

Sun Sep 19 22:36:01 2010

BUILD SUCCEEDED

4| | »l

The successful build generates several files, including test.hex which is the output file that will be
downloaded to the MINI-MAX/P18 board.

15

Simulation

You can simulate the microcontroller and single-step through your program without actually having the MINI-
MAX/P18 connected to your PC. MPLAB has a built-in PIC® microcontroller simulator

To start the simulation, first specify the simulator/debugger to use by selecting
Debugger->Select Tool->MPLAB SIM. MPLAB SIM is the simulator that is built-in to MPLAB.

Cebugger Programmer Tools Configure
1 MPLAE ICD 2
2 PICkit 3
3 MPLAE SIM

4 REAL ICE
5 MPLAE ICD 3

We will start the simulation by resetting the 18F458 microcontroller (in simulation mode). Select
Debugger->Reset->Processor Reset:

Cebugger Frogrammer Tools Configure Window Help

Select Tool b T
Clear Memary b J IDEbU!:] 'lﬁ = |

Run Fa
animake
Halk 5
Skep Inta F7
Skep Ower Fa
Skep Out

MCLR. Reset
Watchdog Timer Reset

Breakpoints. .. Fz

Brawn COuk Reset

Stopatch

Complex Breakpoinks
Stimulus »
Profile »
Zlear Code Coverage
Refresh P

Settings...

16

This will reset the simulated microcontroller and place the current program position indicator (Program
Counter) on the first executable line of code:

Il c:\testh test.asm

li=t

I’ ma vl

e |

p=15f458

finclude <pl3F453 incs

COMFIG 02C = HE , BOR

b'Ooooooooo!
TRIZC

h'lll1l1110°
PORTC

EORY

=10l x|

]

oM

.

The green arrow shows the current instruction that is about to be executed.

Selecting the Debugger menu, you will notice that there are keyboard shortcuts for Simulator operations:

F7 for Step Into
F8 for Step Over
F9 for Run

F2 for Breakpoints

These keyboard shortcuts are faster and easier to use than menu operations and are recommended.

17

Press F7 and the green arrow will move to the next executable instruction:

Il c:" testhtest.asm

|

list p=l8f4ka

fiinclude =plEF4538. incs

COMFIG 02C = HE ., EOR =

movlw L 'oooooooant
mo e TRIEC

movlw L'11111110"
mo e PORTC

END

EORV

=101 %]

[

= OFF, ETVER = 0N

-

sl

To view the simulated PIC18F458 registers, select View->Special Function Registers:

Wiew Project Debugger Progr

Project
Oukpuk

Toolbars

CPU Registers
Zall Stack:
Disassembly Lisk
EEFR.CM

File Reqisters
Flash Daka
Hardware Stack
LD Pizel

Locals

[Memarsy

Program Mermoaty
SER [Peripheral
Special Function

ing

5
Re

1 Memary Usage Gauge

Simulator Trace

Simulatar Logic Analyzer

18

Special Function Registers window will appear:

Il Special Function Registers - |I:I|i|
Address | SFR Neme ° | Hex | -
THES Prescale Ox00
FFD TS Jx0aoooo
FFE TOSH O=x0o0
FFD ToSL O=x0o0
FFF To3T O=x0o0
Faz TRISL Ox7F
Fa3 TRISE OxFF
Fo4 TRISC OxFF
Fas TRISD OxFF
Fag TRISE Ox=x07
F40 TEBOCCH O=x0o0
Faao TXEBEODO O=x0o0
Fa7 TXEBOD1 O=x0o0
F43 TXBOD= O=x0o0
F49 TXBOD3 O=x0o0
Fah TXEBEOD4 O=x0o0 _J
F4EB TXEBODS O=x0o0
FacC TXEBEODS O=x0o0
FaD TXEBOD? O=x0o0
Fa5 TEXEODLC Ox00 ~

Click on SFR Name column to sort by SFR name. Scroll to TRISC. The value of TRISC is now FF hex. This is
the default value upon reset.

Press F7 to step one more instruction. This will cause the instruction
movwf TRISC
to execute and this instruction will assign the value of W (Accumulator) to TRISC. Since W was assigned a

value of b'11111110' (FE hex), TRISC will now have this value. The new value of TRISC is updated and
shown in the Special Function Registers window:

19

M Special Function Registers o [m]

[Ep—— SFR Name | Hex | -
THR3 Prescale 000
FFD TOS Ix000000
FFE TOSH 0x00
FFD TOSL 000
FFF TOSU 0x00
Foz TRISA 0% 7F
Fa3 TRISE OxFF
F34 TRISC OXFE
F35 TRISD OxFF
F36 TRISE 0x07
F40 TZBOCOM 0x00
F46 TXBODO 0x00
F47 TZBOD1 0x00
F48 TXBODZ 0x00
F49 TXBOD3 0x00

F4i TZBOD4 0x00 _J
F4E TXBODS 0x00
F4C TZBODG 0x00
F4D TXBOD? 000

F45 TEBODLC 0x00 -

Another convenient method of watching variables and special function registers is to use the Watch window.
Select View->Watch:

View Project Debugger Progi

Project
Oukpuk

Toolbars k

ZPU Reqisters

Zall Shack
Disassembly Lisking
EEFR.CM

File Registers
Flash Data
Hardware Stack.
L Fixel

Locals

[Emory.

Program Memory

SER [Periphierals

Special Function Registers

‘W akch

1 Memory Usage Gauge

Simulator Trace

Simulator Logic Analyzer

This will open Watch window. Select the Special Function Register to be watched from the left pull down list.
In this case, we are using PORTC in our program so we can watch the value of PORTC:

20

Add SFR|

D Add Symbol | [_BOR_OFF_2L |
FIR3 -

PLUSWD 5|
PLLSWT
PLUSW?

PORTA

PORTE

PORTD

PORTE

| wiatch 1 ES§¥EEE$ | watch 4
POSTDEC?
POSTINGO
POSTIMCT
POSTINGZ
PR2
PREINCDO
PREINC1
PREINC2
PROD
PRODH
PRODL
PSPCONM
RCOM
RCREG
RCSTA
RXBOCOM
R®BOD0
RXBOD1
RXBOD2

Tpds Syrbol Name | Value I

21

After selecting PORTC, click the Add SFR button. PORTC will be added to the list of variables to be watched
and its current value will be displayed:

=10 x|
x—‘«ddSEH”F‘DHTE v| .-'-‘u:h:ISymI:u:uI“_BEIH_EIFF_:ZL |
Update | Lddress | Syvmbol Name | Value I
Foz FORTC O=00

Watch 1 ‘'watch 2| Watch 3| "Watch 4|

Press F7 twice to single step over the lines:

moviw b'11111110'
movwf PORTC

The value of PORTC will change from to FE hex:

Add SER| [ADCOND =] Add Symbol| [_BOR_OFF_2L =]

Tpdate Address Svmbol Nane | Value
PORTC

Watch1 Watch2| Watch 3| watch 4

22

Downloading Programs

To download projects, Micro-IDE is used. We have created project files for both Micro-IDE and MPLAB for all
the PIC® examples. The code can be developed and simulated in MPLAB and downloaded to the actual
hardware using Micro-IDE. Micro-IDE also has a terminal emulator window that allows monitoring the RS232
serial output from the MINI-MAX/P18 board.

Start Micro-IDE by selecting Start, Programs and Micro-IDE. Select the Micro-IDE option under Micro-IDE
folder. This will start Micro-IDE.

ACCessories
Micro-1DE g @ Help Faor Micro-IDE
Microsoft Wisual Studio 6,0 M EE Micro-IDE

@ Help for Basic Compiler BASCOM-8051

ke
=
Microsoft Access

Microsoft Excel

When Micro-IDE is started, the Project selection window appears:

welcome x|

Wielcome to Micro-DE Program Development Ensironment,

YWhhat do pou want to start with;

" Create a new project Cancel |

f* [Open existing project

W Show this dislog at startup.

Click Cancel for this first time because you will first configure communications before opening a project.

23

Open the io.prj project that is under;

\bipom\devtools\MPASM\Examples\pic18

2=

Lok in: | L in | & ®& cf B

File name: | Open I
Files of type: | Project files [*pri =l Carcel |

A

Download the file to the board by selecting Download under Build menu:

Download

If the board is powered and connected properly to the PC, a progress dialog will appear:

Downloading program |

47

NINNNEEEN

24

The progress dialog will disappear following a successful download. Details of the download are shown on the
Output Window:

x| —
4 Succesz witing 32 bytes

Succesz wiiting 32 bytes
Successz witing 32 bytes
Succesz witing 32 bytes
Succesz wiiting 32 bytes
Successz witing 32 bytes
Succesz witing 26 bytes

‘] |

Buld | Debug| FindinFiles 1| Findin Filez 2 Laader

When the download is finished, the progress indicator disappears. This means that the board has received
the program successfully.

After the program has been successful downloaded, it can be started using the Mode button on the main
Toolbar:

e R R =
' N

Mode

Mode button puts the board into Run or Program mode. In Run mode, the microcontroller is executing the
program in its memory. In Program mode, the microcontroller is in Reset state so no programs are running. In
Program mode, microcontroller’s flash memory can be changed and a new program can be downloaded.

The Mode button is Red in Program mode and Green in Run mode. Following a download, the Mode button
will be Red. Click the Mode button to change the mode to Run mode. The program io.hex that you just
downloaded starts executing.

The program io.hex will blink the LED’s that are connected to PORT D on MicroTRAK's 1/0 Module.
Congratulations !!! You have built and executed your first program on MicroTRAK.

Click the Mode button once again so it turns Red. The board is in Program mode now and it will stop running
and the LED’s will not blink any more.

25

LAB2 — Input/Output

Overview

This lab will familiarize you with the /O Module included in
MicroTRAK/P18 for monitoring and control all 1/O ports of the
microcontroller.

Information

I/0 Module allows access to all input/output (1/0O) ports of the PIC18F458 microcontroller on the MicroTRAK
development platform. I1/O Module has 32 switches to control the PIC18F458 microcontroller inputs and 32
LED’s to indicate the port statuses as logic LOW or logic HIGH.

Signal LED Switch Signal LED Switch
RE2 HL1 S1-1 RB7 HL17 S2-1
REO HL3 S1-2 RC2 HL19 S2-2
RE1 HL5 S1-3 RAO HL21 S2-3

No Connect HL7 S1-4 RAL1 HL23 S2-4
RBO HL9 S1-5 RC5 HL25 S2-5
RB1 HL13 S1-6 RA2 HL27 S2-6
RB2 HL15 S1-7 RC3 HL29 S2-7
RB3 HL17 S1-8 RC4 HL31 S2-8

Signal LED Switch Signal LED Switch
RDO HL2 S3-1 RC7 HL18 S4-1
RD1 HL4 S3-2 RC6 HL20 S4-2
RD2 HL6 S3-3 RB6 HL22 S4-3
RD3 HL8 S3-4 RB3 or RB5 HL24 S4-4
RD4 HL10 S3-5 RC1 HL26 S4-5
RD5 HL12 S3-6 RA4 HL28 S4-6
RD6 HL14 S3-7 RCO HL30 S4-7
RD7 HL16 S3-8 RA5 HL32 S4-8

Exercise

Write a program that turns on all LED's connected to the corresponding ports (RA,RB,RC,RD) and reads
status of the corresponding switches.

NOTE: There are a few "special" port pins you can change status (by switches, or by software), but this can
disturb normal operation of the setup. You should exclude these pins in your program.

Special ports: PB6, RC6 and RC7

For example: If you set RC6 or RC7 to logic low, this will break serial communications with the PC since these
pins are used as RS232 Transmit and Receive pins on PIC18F458.

PB6 is monitored by the secondary microcontroller (PIC16F648). If PB6 is set low, PIC16F648 will reset the
main processor 18F458.

26

LAB3 — Traffic Lights

Overview

The purpose of this lab is to control the outputs of the micro-controller in a
given sequence. Green, yellow and red Light Emitting Diodes (LED’s) on the
TB-1 board are connected to micro-controller outputs.

First, write a program to turn on only one LED and then turn off the same
LED, Then, improve the program make the LED blink.

The next part of the lab is to read the input switches. As switches are
mechanical objects, some de-bounce time (dead time) will also be placed in
the program. You will control an LED with one switch: As long as switch is
active, the corresponding LED is On and when switch is inactive, the
corresponding LED is Off. Then, the LED will be made to blink as long as the
switch is On. Finally, you will write a little traffic light controller where the
green, red, yellow LED's on the TB-1 board simulate the traffic lights and the
switches simulate the car presence sensors at a crossroad.

Information

Traffic Light LED’s

Most of the microcontroller pins and the power supply pins are available on the 20-pin connector (J4) for
interfacing to external circuitry, prototyping boards and peripheral boards, including the TB-1 Training Board.

Table 2 shows the J4 pin-out of the microcontroller pins.

MINI-MAX/P18 Expansion (J4)

Signal Pin Pin Signal
RC7 20 19 RC6
RB6 18 17 | RB3or RB5
RC1 16 15 RA4
RCO 14 13 RA5
RB7 12 11 RC2
RAO 10 9 RA1
RC5 8 7 RA2
RC3 6 5 RC4
VCC 4 3 GND
VCC 2 1 GND

Table 2

All of RC ports and some of RA and RB ports of PIC18F458 are accessible via the J3 connector. TB-1, which
is connected to the microcontroller board as explained in Labl, will be used as it already has input switches
and output LED’s connected. Table 3 describes the pin-out on the J3 connector and their designation as

respective to input (switches) or output (LED’Ss).

27

Microcontroller Pin Connector on J3 Input or Output
RB6 18 Input, Active Low, Switch 1
RB3 or RB5 17 Input, Active Low, Switch 2
RA1 9 Output, Active High, Red LED
RC2 11 Output, Active High, Yellow LED
RB7 12 Output, Active High, Green LED
Table 3

Active Low means that the microcontroller must be programmed such that it will interpret the logic low as an
active switch. Similarly, Active High means that to activate an LED, the corresponding microcontroller port pin
must be high logic. The port direction registers (TRISA, TRISB, TRISC) define the state (Input or Output) of
the microcontroller 1/O lines.

Exercise
Initially turn the individual LED’s On and Off without interaction with the switches. Write a program to:

Turn Red LED On only for a brief time interval and than Off
Turn Yellow LED On only for a brief time interval and than Off
Turn Green LED On only for a brief time interval and than Off
Blink Red LED only

Blink all three LED’s

You now have the capability of controlling more than one output line. Next step is to read an input line. When
the Switch is not activated, the corresponding port is high and the LED should be turned On. When the
Switch is activated, blink an LED:

Turn Red Led On if Switch 1 is inactive.

Turn Yellow Led On if Switch 2 is inactive.

Blink Red Led as long as Switch 1 is active and Red Led is On if Switch 1 is inactive.
Blink Yellow Led as long as Switch 2 is active and Yellow Led is On if Switch 2 is inactive.

Write a program to generate the results shown in Table 4 for a traffic light controller:

Switch 1 Switch 2 Red LED Yellow LED Green LED
Open Open OFF OFF ON
Open Closed ON ON OFF
Closed Open OFF OFF ON
Closed Closed OFF OFF OFF

Table 4

Build the program and download to MicroTRAK/P18. Open and close Switch 1 and Switch 2 to change the
LED’s to make sure that your program is handling every case correctly.

28

LAB4 — Analog To Digital Conversion on TB-1

Overview

This lab is used to familiarize you with the operation of an A/D converter. A
varying voltage is applied to the input of the A/D converter by using a
potentiometer and its output is read into the micro-controller and displayed on the
terminal screen. The A/D and the potentiometer are connected the Analog Input
terminal blocks of TB-1. LM35 type temperature sensor will then be connected
to the A/D and temperature values will be displayed on the board.

Information

Voltages that continuously vary as a function of time are defined as analog voltages and can have any value
within certain range, e.g. OV to 5V, or -5V to + 5V, or OV to +12V etc. Digital voltages only have two values
i.e. alora0. An Analog to Digital Converter (ADC) converts the value of the analog voltage into digital

ADC

format or code that is then processed by the microcontroller.

On the TB-1 Training Board, there is an 8-bit ADC (ADC0834 from National Semiconductor) as shown in

Figure 5.

The pin-out for the 14-pin ADC0834 is shown in Table 5.

Pin# Mnemonic Description
1 V+
CS Active low
3 CHO Analog Input Channel 0, OV to 2.5V DC
4 CH1 Analog Input Channel 1, OV to 2.5V DC
5 CH2 Analog Input Channel 2, OV to 2.5V DC
6 CH3 Analog Input Channel 3, OV to 2.5V DC
7 DGND Digital Ground
8 AGND Analog Ground
9 Vref Reference voltage for the A/D, 2.5V DC
10 DO Output Signal generated by the A/D
11 SARS Output, when high A/D in progress, when low data output
12 CLK Input, Clock signal to the A/D
13 DI Input, Data to the A/D
14 VCC Input, Power to the A/D

Table 5

29

Table 6 shows the connections of ADC0834 to J3 connector:

J3 Pin# Microcontroller Pin# A/D Mnemonic A/D Pin#
14 RA5 CS 2
5 RC5 DO 10
N/C N/C SARS 11
6 RC3 CLK 12
13 RC5]| 13

Table 6
V+ []1 U 14 [] VCC
ICS []2 13 [DI
CHO 13 12 [] CLK
CH1 ™4 ADCO0834 11 |1 SARS
CH2 15 10 |1 DO
CH3 []6 9 [] VREF
DGND [|7 8 [] AGND
Top View
Figure 5

30

Single-Ended Multiplexer Mode

Multiplexer Address Channel Number
SGL/ ODD/ SELECT 1)
DIF SIGN 1
1 0 0 +
1 0 1 +
1 1 0 +
1 1 1
Differential Multiplexer Mode
Multiplexer Address Channel Number
SGL/ ODD/ SELECT 1)
DIF SIGN 1
0 0 0 + -
0 0 1 +
0 1 0 - +
0 1 1 -
ADCO0834 Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SETUP TIME
< OUTPUT| DAT,
CHIP SELECT (/CS) | ADDRESS MUX |
START
BIT ODD/SIGN
DATA IN (DI) DON'T CARE (DI DISABLED UNTIL NEXT CONVERSION CYCLE) ‘

SGL/DIF SEII‘_:_E;_:TH Analog Digital Conversion in process ——|

SAR STATUS (SARS) _l

I TRI-STATE

}(—MSB First Data——p€¢——— LSB First Data ——p

DATA OUT (DO)

TRI-STATE

MUX SETTLING TIME——

Figure 6

31

VCC

To Pin 3 of 10 K.ohm
A/D. ChO varlabl.e
X1.1 on TB-1 potentiometer

GND

Figure 7

Pin 3 of the A/D receives the Analog input voltage signal. A DC Voltmeter when placed on Pin 3 should read
between VCC and GND as the potentiometer is varied from one extreme to the other as shown in Figure 7.
The LM35 temperature sensor will also be connected to this input later.

The A/D converter consists of 4-input multiplexed analog channels, which may be software configured as 4
single-ended channels or 2 differential channels, or a new pseudo differential option. The input format is
assigned during MUX addressing sequence prior to start of conversion and this selects the analog input and
their mode (single or differential).

32

Steps for A/D Conversion

Initially the DI and CS inputs must be high.

Pull the CS (chip select) line low and hold low for the entire duration of the conversion. The converter is
waiting for the Start bit and the MUX assignment.

A clock is generated by the microcontroller and sent to the ADC0834 clock input.

The start bit is a logic “1” on the DI input line, after which the MUX assignment word on the DI line is
presented. The status of the DI line is clocked on each rising edge of the clock line.

The SARS status output line from the ADC0834 goes high, indicating that a conversion is now in progress
and the Dl line is disabled.

The data out (DO) line comes out of Tri-state and provides a leading zero for one clock period.

After 8 clock periods, the conversion is complete. The SARS line returns low half a clock cycle later.

The DO line now generates the binary equivalent of the analog value as 8 output bits with Least
Significant Bit (LSB) first. The DO line than goes low and remains low until Chip Select (CS) is made
high. This clears all the internal registers and another conversion may now be started by making the CS
go low again and repeating the process.

Exercise

Write a program that uses the A/D in single ended mode with the potentiometer connected to Channel 0 or
Pin3 on the A/D through the terminal block on the TB-1 board. Vary the analog input voltage and display the
value on the screen. Then, connect the potentiometer to Pin4 also and display its value. Connect the
temperature sensor to Pin3 and potentiometer to Pin4d and display both the values simultaneously on the
terminal screen.

33

LABS5 — Analog To Digital Conversion on MINI-MAX/P18

Overview

The purpose of this lab is to familiarize you with the 10-bit Analog Digital Converter (ADC) on the PIC18F458
on the MINI-MAX/P18 board. The potentiometer (that we used in Lab4) is connected to Analog Port Terminal
on MINI-MAX/P18. Measurement results for all the channels will be displayed on the terminal screen.

Information

PIC18F458 has an A/D control register address - 0x17 and data register address-0x18.

A/D Control register description

Bit Description

7 ADFM: A/D Result Format Select bit
1 = Right justified, 6 Most Significant bits of ADRESH are read as ‘0’
0 = Left justified, 6 Least Significant bits of ADRESL are read as ‘0’

6 ADCS2: A/D Clock Divide by 2 Select bit
1 = A/D Clock source is divided by 2 when system clock is used
0 = Disabled

5-4 ADCS1:ADCSO0: A/D Conversion Clock Select bits
If ADSC2 = 0:

00 = FOSC/2

01 = FOSC/8

10 = FOSC/32

11 = FRC (clock derived from the internal A/D module RC oscillator)
If ADSC2 = 1:

00 = FOSC/4

01 = FOSC/16

10 = FOSC/64

11 = FRC (clock derived from the internal A/D module RC oscillator)

A/D Control register description-continue

Bit Description

3-0 PCFG<3:0>: A/D Port Configuration Control bits
PCFG AN4 AN3 AN2 AN1 ANO VREF+ VREF- C/R

0000 A A A A A AVDD AVSS 5/0
0001 A V+ A A A AN3 AVSS 4/1
0010 A A A A A AVDD AVSS 5/0

34

0011 A V+ A A A AN3 AVSS 4/1
0100 D A D A A AVDD AVSS 3/0
0101 D V+ D A A AN3 AVSS 2/1
011x D D D D D AVDD AVSS 0/0
1000 A V+ V- A A AN3 AN2 3/2
1001 A A A A A AVDD AVSS 5/0
1010 A V+ A A A AN3 AVSS 4/1
1011 A V+ V- A A AN3 AN2 3/2
1100 A V+ V- A A AN3 AN2 3/2
1101 D V+ V- A A AN3 AN2 2/2
1110 D D D D A AVDD AVSS 1/0
1111 D V+ V- D A AN3 AN2 1/2

Legend:

A = Analog input

D = Digital /0

V+ = VREF+

V- = VREF-

C/R = Number of Analog input channels/Number of A/D Voltage references

Exercise

Write a program that uses the built-in 10-bit ADC on PIC18F458, reads all channels and displays their values
on the terminal screen. Connect the potentiometer consistently to the each of analog inputs, vary the analog
input voltage and observe results.

35

LAB6 — Timers and Interrupts

Overview

This lab is designed to familiarize the student with timers and interrupts. External interrupts on switch
closures are generated and background timers are made to run for timing certain external events. The switch
and the LED’s for this experiment are already present on the TB-1 board. Results will be displayed on the
terminal screen.

Information

MicroTRAK/P18 uses the PIC18F458 microcontroller with interrupt capabilities.

An interrupt is executed when the microcontroller stops its normal code and branches to a predefined section
of the memory to execute specific instructions. After this, the microcontroller goes back to its normal
operation from where it had left before. Six interrupt vectors are present on the microcontroller:

Two external interrupts INTO and INT1
Three timer interrupts TimerO, Timerl, Timer2
One serial interrupt

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the

Special Function Register IE, which also contains global disable bit EA that disables or enables all the
interrupts at once.

INTO and INT1:

First exercise is to generate an external interrupt INTO which is tied to port P3.2 (SW1 on TB-1). A change in
the logic level of P3.2 will generate an interrupt in the program. Table 7 defines the registers and the bits that
are used for controlling external interrupt O (INTO). The same holds true for INT1 except instead of ITO, IEQ
and EXO consider IT1, IE1 and EX1 and port number is P3.3 (SW2 on the TB-1).

INTO
Register BIT Description
TCON ITO Set than low level triggered, clear than edge triggered
TCON IEO Set by microcontroller when interrupt occurs and than automatically cleared when
interrupt is processed
IE EA Set to enable global interrupt
IE EXO | Setto enable external interrupt

Table 7
Every time SW1 is pressed on TB-1 (so that port pin P3.2 on the microcontroller is logic low) , the

microcontroller will generate an interrupt and an action will occur, e.g. incrementing a counter and displaying
its value on the terminal screen.

36

Timer0

Register TMOD is the timer counter mode control register and the TCON register turns the timer On/Off and
indicates an overflow by setting a flag bit.

Register Bit Description

TCON TRO | Setindicates TimerO0 is On, clear indicates TimerO0 is Off

IE EA Set indicates Global Interrupt is enabled

TCON TFO Set by the microcontroller when TimerO overflows, cleared by the microcontroller

when vectored to the interrupt service routine

The TMOD register enables the user to select different modes of operation for Timer 0 and Timer 1. Write a
program to run a background timer of 30 milliseconds. Every time the 30-millisecond period is over, the
program will jump to an interrupt routine and toggle the state of an I/O (P1.3 Red LED) line so the Red LED
will blink every 30 milliseconds.

To further expand the program, a counter should also be incremented in the interrupt routine. When the
counter exceeds a certain value (e.g. 1000) another 1/O line (P1.1 Yellow LED) should toggle and the counter
should reset back to zero (1000 * 30 milliseconds = 30,000 milliseconds = 30 seconds). Second LED wiill
blink On and Off every 30 seconds which can be easily monitored using a wristwatch or PC’s clock.

The same can be done with Timerl where by TR1 and TF1 are used.

IE Reqgister
Bit # Mnemonic Description
IE.7 (MSB) EA Global Interrupt Enable
IE6 | e Not Implemented
IE.5 ET2 Timer2 interrupt enable bit.
IE.4 ES Serial Port interrupt enable
IE.3 ET1 Timerl interrupt enable bit
IE.2 EX1 External Interrupt 1 enable bit
IE.1 ETO Timer0 interrupt enable bit
IE.O (LSB) EXO External Interrupt O enable bit

Enable Bit = 1 enables the interrupt
Enable Bit = 0 disables the interrupt

37

TCON Regqgister

Bit # Mnemonic Description

TCON.7 (MSB) TF1 Timerl Overflow flag

TCON.6 TR1 Set indicates Timerl is On and Clear indicates Timer1 is Off

TCON.5 TFO Timer0 Overflow flag

TCON.4 TRO Set indicates Timer0 is On and Clear indicates TimerQ is Off

TCON.3 IE1 Set by microcontroller when Timerl interrupt occurs and cleared by
microcontroller when interrupt is processed

TCON.2 IT1 Set than low level triggered, clear than edge triggered

TCON.1 IEO Set by microcontroller when TimerO interrupt occurs and cleared by
microcontroller when interrupt is processed

TCON.O (LSB) ITO Set than low level triggered, clear than edge triggered

38

LAB7 - 4x4 Keypad

Overview

Student connects a keypad to the keypad connector on the MicroTRAK Carrier Board and programs the
keypad.

Information

The MicroTRAK Carrier Board has a 10-pin keypad connector, which is connected to Port 2 of the
microcontroller. The pin-out of the connector is shown below in Table 8.

Microcontroller Port Pin Keypad Connector Pin#

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
Gnd
Vcc

[

OO NGO Bl WIDN

(SN
o

Table 8

Many keypads are wired as a matrix of rows and columns. The internal connections of a 4-row by 4-column
keypad are shown in Figure 8.

39

VCC

[0

y/ y/ y/ y/
7/ / 7 /7
y/ y/ y/ y/
7/ 7 7/ 7
/' /'yl y/
/7 7 / /7
% \- Y \v % \v % \-
7/ 7 7 7
= & 3 & & & s
o o o o D))
o) o o
(@) O O

COLUMN 4

Figure 8

40

Matrix connection saves on the number of connections and microcontroller port lines. For example, a 4-row
by 4-column keypad would require 17 wires (16 + ground) if each key was individually connected to
microcontroller ports. Using the matrix approach and scanning the keypad under software control reduces the
number of wires and port pins to 8 (4 rows + 4 columns).

When a key is pressed, the row for that key will be physically connected to the column for that key. Therefore,
the port input for the column will be at the same logic level as the port output for the row.

Since the columns (inputs) are normally at the HIGH logic level due to pull-up resistors, the only way to make
a column LOW will be to press a key and make the row for that key LOW. By periodically strobing each row
LOW one row at a time, and reading the column input levels during each strobe, one can determine which key
is pressed.

This is illustrated by Table 9 for the 4 by 4 keypad. In the Row Mask, Row 1 is assigned to the Most
Significant Bit and Row 4 is assigned to the Least Significant Bit. Similarly, in the Column Mask, Column 1 is
assigned to the Most Significant Bit and Column 4 is assigned to the Least Significant Bit.

Action Row Mask Column Mask

No keys were pressed XXXX 1111
Row 1 Column 1 key pressed 0111 0111
Row 1 Column 2 key pressed 0111 1011
Row 1 Column 3 key pressed 0111 1101
Row 1 Column 4 key pressed 0111 1110
Row 2 Column 1 key pressed 1011 0111
Row 2 Column 2 key pressed 1011 1011
Row 2 Column 3 key pressed 1011 1101
Row 2 Column 4 key pressed 1011 1110
Row 3 Column 1 key pressed 1101 0111
Row 3 Column 2 key pressed 1101 1011
Row 3 Column 3 key pressed 1101 1101
Row 3 Column 4 key pressed 1101 1110
Row 4 Column 1 key pressed 1110 0111
Row 4 Column 2 key pressed 1110 1011
Row 4 Column 3 key pressed 1110 1101
Row 4 Column 4 key pressed 1110 1110

Table 9

41

Port2 is connected to the Keypad connector with the configuration shown in Table 10.

Port2.0 Rowl Output
Port2.1 Row?2 Output
Port2.2 Row3 Output
Port2.3 Row4 Output
Port2.4 Column 1 Input
Port2.5 Column 2 Input
Port2.6 Column 3 Input
Port2.7 Column 4 Input
Table 10

In the port direction register, the port pins connected to rows are defined as outputs and the port pins
connected to columns are defined as inputs. Each key on the keypad is assigned a given value by the
programmer before hand.

The Keypad algorithm can be based on the following rules.

Algorithm

A Column is generally high (output).

One row at a time is made to go low (input) and than the columns are read.

If one or more columns are low than the switches of the corresponding columns are active and their
respective values should be displayed on the terminal.

Exercise

Determine the pin-out and the matrix layout of your keypad using the ohmmeter function of your multi-meter.
Write a program that displays — on the terminal screen- the key being pressed on the keypad.

42

LAB8 — Liquid Crystal Display (LCD)

Overview

This Lab familiarizes the student with industry-standard alphanumeric LCD’s by connecting the LCD to the
LCD connector of MicroTRAK/P18 and writing a program in C to display various characters using 4-bit mode.

Information

Dot matrix LCD displays are readily available from many companies such as Sharp, Hitachi and OPTREX.
The LCD’s generally come in display formats of 16 X 1, 16 X 2, 24 X 2 and 40 X 4 (column X row). These
typically have 8 data lines DBO — DB7 (Data 0 through Data 7), VCC (Power), GND (Ground), RS (Register
Select), R/W (Read/Write), E (Enable).

This exercise will use a 24 X 2 display, to be connected to the LCD connector. The three control lines are
explained below.

RS Register Select Control
1 =LCD in data mode
0 = LCD in command mode

E Data / Control state
Rising Edge = Latches control state
Falling Edge = Latches data

R/W Read / Write control
1 = LCD to write data
0 = LCD to read data

In the 4-bit mode, data is transferred either on the lower or upper nibble of the port, this saves in I/O lines but
the program occupies more space as two commands are required to display a character.

43

Table 11 shows the connection between the display and the LCD connector in 4-bit mode with low nibble.

LCD Connector Pin# Microcontroller Pin LCD Display Pin LCD Display Pin#
1 GND GND 1
2 VCC VCC 2
3 Vee (PIC) VEE 3
4 RE2 RS 4
5 REO R/W 5
6 RE1 E 6
7 not connected not connected 7
8 not connected not connected 8
9 not connected not connected 9
10 not connected not connected 10
11 RBO DB4 11
12 RB1 DB5 12
13 RB2 DB6 13
14 RB3 DB7 14

Table 11
Exercise

Using the LCD datasheet, write a program that displays “Hello World” on the first row of the LCD. Then,
display the same message on the second row of the LCD.

44

LAB9 - How to adjust LCD contrast

Overview

Student adjusts LCD contrast, using DAC embedded in secondary microcontroller PIC16F648 on

MINI-MAX/P18 board.

Information

The contrast of the LCD module is adjusted by means of the Vee Voltage (pin 3). Port pin RB3 of secondary
PIC controller PIC16F648 on the MINI-MAX/P18 is connected to Vee pin of the LCD through a low-pass (RC
) filter. This enables software contrast adjustment. PIC16F648 communicates with the main microcontroller
PIC18F458 using 12C 2-wire communications and acts as a slave peripheral device. 16F648 factory firmware
has a built-in Pulsed Width Modulation (PWM) feature that can be controlled from the main microcontroller.
PWM output produces a digital waveform with programmable duty cycle and is converted to an analog

voltage using a low-pass filter is used (see figure below):

f

‘ Analog vokage

Tirne

1020 O LCD

Pl

FIC16FE4E

(Analog voltage)

1 l [}Vee

10Uk

45

PIC16F648 factory firmware has two PWM modes: 4-bit and 10-bit PWM.

For setting the 4-bit PWM value, you should send a numeric value from 0 to 15:

4 bits PWM
| o | o | o | o | PWwM3 | PWM2 | PWM1l | PWMO |

For setting the 10-bit PWM value, you should first send the highest 4 bits of 10-bit PWM value and then you
should send lowest 6 bits + 0x40 (bit 6 set) as second byte:

10 bits PWM
first byte 0 0 0 0 PWM9 PWM8 PWM7 PWM6
second byte 0 1 PWM5 PWM4 PWM3 PWM2 PWM1 PWMO

Exercise

Write a program that uses 4-bit PWM for contrast adjustment and displays on the first row of the LCD the
current contrast.

Then, improve the program to use 10-bit PWM.

46

LAB10 - Buzzer

Overview

Student uses Pulse Width Modulation (PWM) techniques to vary sounds from the buzzer on the TB-1 to
generate different notes using software. Student then generates a little musical piece using the notes that
he/she programmed.

Information

A buzzer or simple speaker will generate music when a series of square waves is applied to its positive input
with the negative grounded. The frequency of the square wave should be less than 12KHz to be audible.
Varying the frequency of the square wave will generate different musical tones.

The buzzer on the TB-1 is connected to port pin RAO on the micro controller. This pin needs to be
programmed as an output pin and square waves of varying frequencies and duty cycle need to be generated.

Since the Pulse Width Modulation feature is on port pin RC2, we will connect RAO and RC2 together using a
small jumper wire.

Exercise

Connect microcontroller port pins RAO and RC2 together as shown. You can use a small jumper wire or
an E-Z-Hook wire from BiPOM (Part number 9110-4) for this purpose.

a7

Program RC2 on the microcontroller as an output pin

Decide a period or frequency of square wave between 1KHz to 15KHz.
Generate a signal of 50% Duty cycle, where

Duty Cycle = On Time / (On Time + Off Time) of square wave.

Activate buzzer for approx 5 to 10 seconds

Change frequency of buzzer and note the different sound

Change only duty cycle and note the different intensity.

48

